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An alternating direction (ADI) method for a self-acting rectangular 
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S U M M A R Y  
The stationary Reynolds equation is solved over a rectangular region. The problem is linearized by Picard linearization. 
The ADI method is used to solve the resulting set of linear equations. A set of parameters is introduced to speed 
up convergence as well for the Picard linearization as for the ADI method. A comparison is made with Booy-Coleman's 
method. Results are given for bearing numbers 10 to 1000. 

1. Introduction " 

In gas-bearing problems the so-called Reynolds equation has to be solved numerically, for 
details see [1]. In this equation the ratio between viscous and non-viscous forces is given by 
the bearing number A. 

For low and moderate values of A many numerical methods iterative and direct are available. 
For large values of A (A > 100) computing time increases and direct methods are preferred to 
iterative methods. A commonly used direct method is the Booy-Coleman method [2, 3]. 
This method is rather complex in programming. It needs a large memory space and with 
increasing A the number of orthogonalizations increases and so the computing time. 

Although the ADI method is not a new approach in gas-bearing problems [1, 5] the method 
here described uses a set of parameters to accelerate convergence. The acceleration parameters 
for the ADI method are so chosen that it, reduces to a direct method. In comparison with the 
Booy-Coleman method the here described method is simple to program, uses less memory 
and is, especially for high values of A more efficient. 

Computations are made for A in the range 10 to 1000, although it is not necessary for A to 
be in this range. In the computations the number of mesh points varies from about 100 to 1000. 

2. Analysis of  the problem 

Figure i gives a sketch of a rectangular gas bearing with bearing width B and bearing length L. 
The sliding velocity is assumed to be - i  Uo, where i indicates a positive unit vector. 

We assume in the bearing viscous, isothermal and laminar flow so the density p(X, Y) is 
proportional to the pressure P(X, Y), and the viscosity a is constant. From Fig. 1 it follows 
that H =  (Ho/Xo)X, if we assume the stationary case. The pressure P(X, Y) can be calculated 
by solving the Reynolds equation for P. 

This equation reads in the instationary case [1] : 

d" [ pH3 I 0 l V ~ l ~ -  a grad P-�89 - ~ pH = O. 

In our case it reduces to 

12-~1 div(PH 3 grad P) + U~ O(PH)~x - O, 

with P = P, as the boundary condition, where P, is the ambient pressure. 
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Figure 1. Plane rectangular slider bearing schematic. 

x 

Introducing the dimensionless quantities 

P X Y H 
p p ,  x X o ,  y X o ,  h H~ , 

the Reynolds equation reduces to: 

- -  ~X -[-~y X3~yy + 6  H~P~ ~x " 

Using the definition Q = p2 x 2 and A = 6 U o a X o / ( H  2 P.), the Reynolds equation can be written 

0 zQ 02Q 1 0Q A 0Q 
Ox 2 "~ 022 X OX = xQ ~ OX (1) 

with boundary conditions: 

Q(1, y) = 1 

Q 1 + ~oo,Y = 1 + Xoo O < y < L / 2 ,  

Q (x, O) x 2 
I l<_x<_ I + B / X  o.  

Qylr=L/z = o ) 

where Qr indicates differentiation with respect to y. The condition Qrly = L/2 = 0 is a consequence 
of the symmetry of the problem. 
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3. Description of the method of solution 

In order  to solve the problem use will be made  of  an iterative method  with some special 
features. Therefore instead of the non-linear equat ion (1) we consider the linearized equat ion : 

Q(k)+g)(k)+(_l/x+#)Q~) - ( - -A ) :,~ ~yy , coQ(k)= Q~-l )  + # _ coQ(k-1) (2) 

with k = 1, 2, 3 . . . .  , and Qx and Qy etc. indicates differentiation with respect to x and y, respec- 
tively. Estimates for the starting value Q(O) and the parameters  # and co will be given in the 
sequel. 

Discretizing with the normal  5-point molecule gives 

Qi- l , j -2Qi ,  j+Qi+l, j  + O(h2), 
Qx~= h~ 

Q,, Qi, J - l - 2 Q i ,  j+Qi, J+a O(h 2) 
= h 2 + , 

Qx = Q i + l , i - Q i - l , i  + O(h2), 
2h~ 

In Fig. 2 the meshsize and the number  of meshpoints  is given. 
Defining a = 2 (1 + 7)+ coh 2, and fli = h x ( # -  1/x~)/2, gives for the discretized form of equat ion 

(2): 

(_ l+f l i )n (k )  ~_O#)(k)~_t I _ R  ~t')(k) ._vo(k). ,~(k) = _h217(k7 1) .~ i - l , j  ~ .~ i , j~ \  - IJil-~i+l,3 I~-~l,j-l--~:~i,j+l "'x --~,J 

with 2 2 ~,=hx/h, and i = 1 ( 1 ) M - 2 ,  j = 0 ( 1 ) N - 2 ,  
( ) / r ) ( k - l )  g](k-1)\ 

ulk~_ 1) = - A  ~ i + l , S  ~ i -  x,.(} 
to!k:-~)~ * + ~ \ 2h~, / - co@'~f ' "  Xi~ol,l ! 

The boundary  condit ions become:  

Q (0,j) = 1 ,  

Q(i, N -  1) = x 2 , 

( X ~ )  2 Q ( M - I , j )  = 1 + , 

qy=O 

i -o  

2 .... 

h 
i'S- l Y q-x 2 

h i=O x 
> 

Q- I+B/Xo )2 

i "M- I 

Figure 2. The rectangular integration region, h x and hy sides of the rectangular meshes. N = number of horizontal 
lines. N = number of vertical lines. 

Journal of Engineerino Math., Vol. 9 (1975) 71-79 



74 R .  W.  de  Vries  

and Q(i ,  1) = Q(i ,  - 1 ) .  

The discretized problem gives rise to a set of linear equations A Q  = F .  

The matrix A is a sparse matrix and the non-zero elements can be composed by the following 
rules' 

all .= o;, 

ai, i+ 1 = - -~  , 

ai. i+ 1 = - - 2  7 , 

ai, i_ 1 = .-,~ , 

ai, i - l  ~ O ,  

ai, N+i_  1 = - - 1 - - / 3 p ,  

a i + l , i _ N + 2 = - - l + / 3 p ,  i 

All the other 

- -h l  

- h l  

- h l  
V -- - h x  2 

-h~ 

- h l  
where 

i =  1,2 . . . .  ( N -  1 ) ( M- 2 ) ,  

i = 2, 3, ..., N -  1, N +  1 . . . . .  2 N - 2 ,  2N . . . .  ( N -  1 ) (M-  2 ) -  1, 

i =  l , N ,  Z N - 1 , 3 N - 2  . . . .  , ( M - 3 ) ( N - a ) + I ,  

i = 2 , 3  . . . .  N - 1 ,  N + I  . . . .  , 2 N - 2 , 2 N  . . . .  ( N -  I ) ( M - 2 ) ,  

i =  N ,  Z N - 1 , 3 N - Z ,  . . . , ( M -  3 ) ( N - 1 ) +  a , 

i = l ,  2 , . . . ( N - 1 ) ( m - 3 ) a n d p = e n t i r e ( ~ - Z l - + l  , i - 1  ) 

= N -  1, N, N +  1 . . . .  , ( N -  1 ) ( M - 2 ) -  1 

and P = entire ( ~ _  1 ) + 1  . 

elements are zero and F is defined by: 

Ul,o + 1 -/31 

U1,1 + 1 --/31 

U,,N 1+1- /31-x27  

U2,o 
z 

U2,N_ 1 ~- X2) ' 

UM_ 2 ,N-  l q- X 2  _ 2 ~; + t5 

B)  2 
a = (1 +/3M-2) (1 + Voo 

According to the ADI method I-4] the matrix A is splitted in the matrices H and V, so A = H + V, 
where 

c~/2 - 1 -/31 
"~ 

- 1 - / 3 1  

~q _- 

~176176176 

c~/2 

- 1 - / 3 2  
" " .  

...... l__f12 
"".. 

"-.. 
. . . . .  �9 ... 1-3M 3 

"'-, ~ ""- .  

....... - - l - - t i M _  3 
~ 

"*, 

- 1 + / 3 ~ t - 2  ~ /2  "', 
".. "'"".. " . ,  

- - l+f lM_ 2 ~/2 m 

"~176176 

~/2 

- 1 +f12 ~/2  
" ' - ,  

--1+/32 

The blocksize of the blocks i n /q  is N - 1 .  
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If we define the matrix W to be: 

- ~ / 2  - 27 

- 7  ~/2 - 7  
= ~  ~/.2 - 

W ~ *'%,. " ' . .  �9 ~ " . . .  " ' " ' , ,  
" , .  , .  

" ' .  " , , .  " " ' ~  
' , .  ' . .  ",.~ 

.,~ '.. �9 ., " , ,  

" ' -  7 ""~/2 

then g can be written as a diagonal block matrix- 

" W  

W 0 

W 

F = 

0 

W 

with rank N -  1. 

So the M - 2  uncoupled matrices W compose "~'~u,,. matrix" V. 
In the A D I  method a set of acceleration parameters  has to be chosen. Calling these parameters  

rm then the system AQ = F can be solved with the following iterative scheme [4] : 

(H+r. I )Q(S+~)= ( r . I - F ) Q ( ~ ) + F  ) 

(F + rmi)Q(S+ l) = (rmi_ H)Q(~+ ~) + F ~ ) (3) 

The so-called Peaceman-Rachford matrix is defined by: 

T~ = (V + rI)- i (rI - H)(FI + rI)- i (rI - V) 

and the error in the sth iterationstep by ~(S)=Q(~)_Q. So 

s(s)= ]2 I T~ s (~ 
p= l  

In linearizing equation (1) we have chosen for the so-called Picard linearization. 
By considering equation (2), it is seen that the matrices - 1 / h  2 H and -1/hZr V are the 

discretized forms of the operators 
0 2 0 2 

Ox 2 + ( - l / x + # ) ~  - o9/2 and - -  - o)/2. 
OX c~y 2 

By direct calculation it follows that these operators do not commute if # = # (x, y) or co = co (x, y). 
A sufficient condition for the matrices H and V to commute  is that co and # are constants. 

It is easy to see that if the m a t r i c e s / / a n d  F commute,  the following matrices commute  : 

( V + r I )  -1 , ( r I - H ) ,  (H+rI )  -1 and ( r I - V ) .  
Now we are able to look for a set of acceleration parameters {r,,}. Suppose V with rank J// 
possesses a set of J /  linear independent eigenvectors {tk} and corresponding eigenvalues 
{Vk}. Then 

~(0) = O~ k tk 
k=l  

or 

~(s) ~__ Z (Zk 
k=l  j = l  

with 

2 ~(s)= ~I T~j ~ (Xktk 
j=1 k= l  

,~a f i r  j-- v k ~t~ = Z ~kFItk 11 
k=l  j = l  rj-t-Vk 
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~I = ( r s I - H ) ( I ~  +rsI )  - l  (rs_l l - H , ) ( H  +rs_ l  I) ... (rl I - H , ) ( H  + r l  I) -1 �9 

The following inequality holds: 
J// S 

j=l~i1 r j -  V k Iler --%< k=IZ [0~k[ [I/ttkll .= r j + v  k 

By choosing rj = v j, I1~r =0  after J/{ iterations. 
V is completely reducible and is composed of M -  1 matrices W with rank N -  1. The iteration 

scheme (3) reduces after N -  Literations to a direct method. To get the above mentioned method 
we have to calculate the eigenvalues of W. Instead of W, we consider the matrix 1~, 

-~/2 - ? 

/ 

1~ = -7. .... ~/2... - ~  ..... / ,  with rank 2 N - 3 .  
"'.,. "".. ""... / 

............ " .......... "'2-"7~1 
"""-' 7 .... c(2J 

It is easy to see that the kth component of the qth eigenvector of W can be written as 
d sin [ q H k / ( 2 N -  2)], with d a constant (k = 1, 2 . . . . .  2 N -  3). 

The first row of W is situated at the ( N -  1) th row of 1~. So we are looking for eigenvectors 
of VP with components d sin [ q l I k / ( 2 N -  2)] with k = N -  1, N . . . . .  2 N -  3. Substitution of the 
so formed eigenvectors t in the matrix vector product Wt, gives as eigenvalues for W, 

q H  
- 2 7  cos 2 ~ _  2 + c~/2, 

with q = 2 p - 1  and p = l ( l ) N - 1 .  

4. Estimates for to and p 

In equation (1) the parameters/~ and 09 are introduced to speed up the convergence of problem 
(2). 

We define-z (k) = Q(k) _ Q(k- 1), k > 2. Using the definition 

- A  
C ( k )  - + 

it follows from (2) that 

(k) (k) (k) z(~)~ + z,,, + (I ~ - 1/x)z~ - coz = C(k  - 1) Q~- 1)_ C(k  - 2) Q~- 2)_ coz(k- 1) 

with z = 0 on the boundary of the rectangle G {x, y f 1 _< x_< 1 + B/Xo,  0 < y <  L}.  We expand 
(Qx/(Q)~)(k-1) in the function space {Q(k)} about the "point" Q(k-2), neglecting second order 
terms. This gives: 

( AQ~-2)  co) ~(k- 1) (k) (k) (k) C (k - 2) z i  g - 1) + _ Zxx+ Z~y + ( # -  1/x)z~ - c o z  (k)= ~ 2 x Q ( ~ _ 2 ) ) � 8 9  

This equation is an elliptic equation which follows the maximum principle if co > 0 [7, p. 88]. 
So 

maxJz(k)l < K max C(k -2 ) z (~  k - l )  + 2xQ(k_2)(Q(k_2))~ -- co z (k-l) . 
G G 

As Q is bounded on G if A--, oe we choose for 

/~ = �89 n + max 

to minimize C ( k - 2 ) .  
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If A ~  o% Q~ is not bounded everywhere, so it is not possible to get a feasible estimate for (~9. 
However if A--* oo we can make the assumption that Q is independent of y (see the next section) 
and as an estimation for Qx we use for A >> 1, the mean value of the asymptotic value of Qx for 
A--.oo over the interval 1<_ x<_ I + B / X  o. So 

co = A/4(I +(1 + B/Xo)2)/(B/Xo)(1 + 1/(1 + B/Xo)4).  

5. Estimation of the starting value Q(O) 

A commonly used estimate for Q(O) is Q ( ~  This is a feasible estimation for small values 
of the bearing number A. For  large values of A we assume that, except for a boundary layer 
0 < y < 6, Q is independent of y. 

Using the definition Bo= (1 + B/Xo), Q tends to Bg if A tends to infinity, and equation (1) 
is approximated by 

Qxx = - A / ( B Z ) Q J  x , 

with boundary conditions Q = I if x = 1 and Q = B g if x = B o. 
Solving this equation gives 

1) (x-a / .o  + 1 _  X) 
Q = Qb = Bo a/.o+l _ 1 + 1. (4) 

In the boundary layer (i) is approximated by Qyy = -2 A /Bo  and the boundary conditions are 

Q y =  0 
y = 6 , and Q = x 2 if y = 0 .  

Q = Qb 

So we get 

Q = _ A/Bo y2 + 2Aa/Bo y + x  2 (5) 

and 6 = (Bo (Qb-- x2)/A) ~. 
We use (4) as a starting value if 6 <<_ y < L/2 and (5) if 0 < y < 6. 

6. Numerical results 

TABLE 1 

Pressure distribution for A = 10, (Q J/x)-  1 = p. 

X BC (M=21, N=7) ADI (M=21, N=7) ADI (M=41, N= 13) 

1.05 0.1520 0.1525 0.1527 
1.10 0.2176 0.2183 0,2184 
1.15 0.2441 0.2449 0.2450 
1.20 0.2504 0.2513 0.2512 
1.25 0.2454 0.2464 0.2463 
1.35 0.2194 0.2205 0.2204 
1.40 0.2029 0.2040 0.2039 
1.45 0.1854 0.1866 0.1864 
1.50 0.1676 0.1688 0.1687 
1.55 0.1499 0.1511 0.1510 
1.60 0.1323 0.1335 0.1334 
1.65 0.1150 0.1162 0.1161 
1,70 0.0979 0.0992 0.0991 
1,75 0.0811 0.0824 0.0823 
1.80 0.0645 0.0658 0.0657 
1.85 0.0480 0.0493 0.0493 
1.90 0.0316 0.0329 0.0329 
1.95 0.0152 0.0165 0.0165 

Journal of Enoineerin 9 Math., Vol. 9 (1975) 71-79 



78 R. W. de Vries 

The calculations were made on the IBM 360/50 computer of the T.H. Twente. The results 
of  this method are compared with the results of the B o o y - C o l e m a n  method. In the following 
tables the pressure computed by B o o y - C o l e m a n  (BC) and ADI  are shown for the line y = L/2, 
and A = 10 and 100. 

The programs are written in Fortran, using single precision for the Booy-Co leman  method 
and double precision for the A D I  method. 

The dimensions are taken L = B =  X 0 = 1. 

TABLE 2 

Pressuredistribution~rA=lO0. 

X BC (M=21, N=7) ADI (M=21, N=7) ADI (M=41, N=7) ADI (M=81, N=7) 

1.05 0.9331 0.9352 0.8484 
1.10 0.7981 0.8003 0.8004 
1,15 0.7246 0.7266 0.7263 
1.20 0.6543 0.6561 0.6561 
1.25 0.5896 0.5913 0.5913 
1.30 0.5299 0.5314 0.5314 
1,35 0.4745 0.4758 0.4758 
1.40 0.4229 0.4241 0.4241 
1.45 0.3748 0.3759 0.3759 
1.50 0.3298 0.3308 0.3308 
1.55 0.2876 0.2885 0.2885 
1.60 0.2480 0.2487 0,2487 
1.65 0.2106 0.2112 0.2112 
1.70 0.1754 0.1759 0.1759 
1.75 0.1421 0.1425 0.1425 
1.80 0.1106 0.1109 0.1109 
1.85 0.0807 0.0810 0.0810 
1.90 0.0524 0.0526 0.0526 
1.95 0.0255 0.0256 0.0256 

0.8363 
0.7986 
0.7260 
0.6561 
0.5913 

X. 
.00 

Figure 3. Pressure distribution for A= 1000. 
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In the B o o y - C o l e m a n  method the nonlinear  problem was linearized with the so-called 
quasi-linearization. So convergence was quadratic.  Number  of iterations for BC was 2 for 
A D I  10. 

Comput ing  time was slightly in favour of  ADI ,  24 sec. to 28 sec. C P U  for BC. For  higher 
values of A, the comput ing  time was highly in favour of ADI ,  a l though the AD1 computa t ions  
are in double precision. 

In Table 2 we see the pressure distribution for A -- 100, comput ing  time for BC 101 sec. CPU,  
ior A D I  resp. 40 sec., 67 sec. and 191 sec. CPU.  

F r o m  Table 2 we see that it is difficult to get accurate results near x = 1 for higher values of A. 
Because x > I, 

X -A/[ I+(B/X~ --'+0 if A ~ o o  . 

In the program,  a test is made if 

(1 + 5x) -A/[1 +(B/X~ 1 = 10- a 0 

and 6~ > 10 -4. If  true then 56x is used as integration interval in the x-direction. For  x > 55~ 
we use the solution Q = (1 + B/Xo) 2. N o w  we are able to get accurate results near x = 1 for high 
values of A, without  increasing the number  of  mesh points. 

The pressure distribution for A = 1 0 0 0 ,  c5~=0.047 is shown in Fig. 3. Only the interval 
1 _< x_< 1.23 is plotted, for x > 1.23 we use the solution Q = 4. 

The author  is indebted to Prof. P. J. Zandbergen,  Mr. van Beckum and Mr. van Eck of  this 
institute. 
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